ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Thomas M. Evans, Alissa S. Stafford, Rachel N. Slaybaugh, Kevin T. Clarno
Nuclear Technology | Volume 171 | Number 2 | August 2010 | Pages 171-200
Technical Paper | Radiation Protection | doi.org/10.13182/NT171-171
Articles are hosted by Taylor and Francis Online.
Denovo is a new, three-dimensional, discrete ordinates (SN) transport code that uses state-of-the-art solution methods to obtain accurate solutions to the Boltzmann transport equation. Denovo uses the Koch-Baker-Alcouffe parallel sweep algorithm to obtain high parallel efficiency on O(100) processors on XYZ orthogonal meshes. As opposed to traditional SN codes that use source iteration, Denovo uses nonstationary Krylov methods to solve the within-group equations. Krylov methods are far more efficient than stationary schemes. Additionally, classic acceleration schemes (diffusion synthetic acceleration) do not suffer stability problems when used as a preconditioner to a Krylov solver. Denovo's generic programming framework allows multiple spatial discretization schemes and solution methodologies. Denovo currently provides diamond-difference, theta-weighted diamond-difference, linear-discontinuous finite element, trilinear-discontinuous finite element, and step characteristics spatial differencing schemes. Also, users have the option of running traditional source iteration instead of Krylov iteration. Multigroup upscatter problems can be solved using Gauss-Seidel iteration with transport, two-grid acceleration. A parallel first-collision source is also available. Denovo solutions to the Kobayashi benchmarks are in excellent agreement with published results. Parallel performance shows excellent weak scaling up to 20000 cores and good scaling up to 40000 cores.