ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
G. Danko, J. Birkholzer, D. Bahrami, N. Halecky
Nuclear Technology | Volume 171 | Number 1 | July 2010 | Pages 74-87
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT10-A10773
Articles are hosted by Taylor and Francis Online.
A coupled thermal-hydrologic-airflow model is developed, solving for the transport processes within a waste emplacement drift and the surrounding rock mass together at the proposed nuclear waste repository at Yucca Mountain. Natural, convective airflow as well as heat and mass transport in a representative emplacement drift, embedded in a three-dimensional, mountain-scale rock mass with edge cooling, are explicitly simulated for the first time in the literature, using the MULTIFLUX model. The conjugate, thermal-hydrologic transport processes in the rock mass are solved with the TOUGH2 porous-media simulator in a coupled way to the in-drift processes. The new simulation results show that large-eddy turbulent flow, as opposed to small-eddy flow, dominates the drift airspace for at least 5000 years following waste emplacement. The size of the largest, longitudinal eddy is equal to half of the drift length, providing a strong axial heat and moisture transport mechanism from the hot drift sections to the cold drift sections. The in-drift results are compared to those from simplified models using a surrogate, dispersive model with an equivalent dispersion coefficient for heat and moisture transport. Results from the explicit, convective velocity simulation model provide higher axial heat and moisture fluxes than those estimated from the previously published, simpler, equivalent dispersion models, in addition to showing differences in temperature, humidity, and condensation rate distributions along the drift length. A new dispersive model is also formulated for comparison, giving a time- and location-variable function that runs generally about ten times higher in value than the highest dispersion coefficient currently used in the Yucca Mountain Project.