ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Kazuaki Kito, Aydin Karahan, Yasuro Kimura, Pavel Hejzlar, Mujid S. Kazimi
Nuclear Technology | Volume 171 | Number 1 | July 2010 | Pages 27-37
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT10-A10770
Articles are hosted by Taylor and Francis Online.
An advanced design of a Large Assembly with Small Pins (LASP) has been proposed at the Massachusetts Institute of Technology to increase the power density of boiling water reactors (BWRs) while keeping most of the operating conditions of current BWRs. LASP is based on replacing four traditional assemblies and the large water gap regions with a single large assembly having a 22 × 22 square lattice. In-assembly water rods accommodate control rods as well as provide help to the moderation of neutrons. Previous steady-state analysis showed that the LASP core allows for operation with 20% higher power density than the core with traditional 9 × 9 fuel assemblies. However, the void reactivity coefficient of the LASP core is 25% more negative and the steam flow rate is 20% higher than that of the reference core. In this study, the performances of the LASP core and reference core are compared for selected design-basis accidents and transients. Generally, the LASP design is found to behave in a manner similar to the traditional assemblies. First, the clad peak temperature during a large-break loss-of-coolant accident analysis satisfies regulatory criterion, and it is possible to preserve peak cladding temperature margin of the reference design if the capacity of the low-pressure core injection system is increased by 20%. Second, the generator load rejection with bypass failure and feedwater controller failure analyses show a decrease in dryout margin for the LASP core because of the combination of more negative void coefficient and increased steam load. However, this problem could be remedied by increasing the steam line flow area or allowing an additional flow restrictor in the steam line to attenuate the back propagating pressure wave in the main steam pipe following the turbine stop valve closure. Finally, the LASP core preserved the same level of margin to dryout as the reference core in the cases of four other evaluated events.