ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Kazuaki Kito, Rui Hu, Mujid S. Kazimi
Nuclear Technology | Volume 171 | Number 1 | July 2010 | Pages 1-13
Technical Paper | Reactor Safety | doi.org/10.13182/NT10-A10768
Articles are hosted by Taylor and Francis Online.
The Large Assembly with Small Pins (LASP) concept is an evolutionary fuel design proposed to enable a higher power density in boiling water reactors while maintaining the same operating conditions, such as power-to-flow ratio, core inlet conditions, and fuel-to-moderator ratio. It is based on replacing four traditional assemblies and the large water gap regions between them with a single large assembly having a 22 × 22 square fuel pin lattice. Twenty-five water rods within the assembly help maintain neutron moderation and accommodate as many finger-type control rods. It was previously shown that the LASP core allows operation with 20% higher power density than the core with traditional 9 × 9 fuel assemblies. However, the void reactivity coefficient of the LASP core is 25% more negative. In this study, the stability performance of the LASP core has been evaluated.The characteristics of density wave oscillations in the LASP core and their sensitivity to the operating parameters have been investigated. Although the perturbation decay ratios for the LASP core were found to be greater than those of the reference core, the stability criteria are sufficiently satisfied. Sensitivity studies were performed on the effects of design and operating parameters. It can be concluded that the LASP and the reference core have similar sensitivity to operating parameters. Furthermore, the calculated decay ratios were much smaller than the stability criterion for all the considered parameter ranges.