ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
D. Kontogeorgakos, I. E. Stamatelatos
Nuclear Technology | Volume 170 | Number 3 | June 2010 | Pages 460-464
Technical Note | Fission Reactors | doi.org/10.13182/NT10-A10331
Articles are hosted by Taylor and Francis Online.
The aim of this study was to validate a Monte Carlo-based model of the Greek Research Reactor-1 (GRR-1) developed with the MCNP5 code. The GRR-1 core was modeled in detail using the exact geometry without approximations. The inventory of the core was derived using the WIMS-ANL code, taking into account the different 235U burnup of each fuel assembly. The model was validated against experimentally determined control rod reactivity worth and neutron flux measurements performed in various irradiation positions. The ratio of the calculated-to-measured integral reactivity of each of the five control rods was found to be 0.972 ± 0.151, 1.083 ± 0.168, 1.156 ± 0.179, 0.874 ± 0.137, and 1.097 ± 0.170. The calculated-to-measured thermal neutron flux ratios ranged from 0.83 ± 0.04 to 1.22 ± 0.07. Therefore, good agreement between MCNP calculated and experimental values was observed. The GRR-1 core model will be fully implemented in the design of material irradiation experiments along with reactor safety and fuel management studies.