ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Live long and prosper
Lisa Marshallpresident@ans.org
October 11, 2024, marked the 70th anniversary of the American Nuclear Society. Taking a long view, we have not looked back and instead have tackled challenges and moved forward with lessons learned. Whether we pull examples from energy or nonenergy aspects of our nuclear enterprise, our planet has benefited from nuclear science and technology, and ANS has been there every step of the way.
As the Society reflects on its own history, let us remember:
E. Teuchert, K. A. Haas, H. J. Rütten, Yuliang Sun
Nuclear Technology | Volume 102 | Number 2 | May 1993 | Pages 192-195
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT93-A34816
Articles are hosted by Taylor and Francis Online.
In high-temperature reactors (HTRs), ingress of water introduces positive reactivity. Normally, this is controlled by the reactor itself, but in hypothetical situations, there could be a need for an active support by the control system. Calculational research identifies three reasons for the reactivity change caused by the water: (a) a negative contribution by the absorption of the hydrogen, (b) a positive contribution by the softening of the neutron energy spectrum, and (c) a reduction of the neutron leakage losses due to a shift in the neutron flux local distribution. By increasing the carbon/heavy metal ratio, the reactivity effect can be reduced to almost zero or even to negative values. In the modular pebble-bed HTR, this effect can be accomplished in a simple manner. By adding 25% of graphite spheres to the regular batches of feed fuel elements, the neutron spectrum effect is reduced, and the fractional absorption of hydrogen is increased; thus, the maximum excess reactivity is limited to 0.3%. The effect on economy and safety is negligible.