ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Michael D. Allen, Harlan W. Stockman, Kenneth O. Reil, Arthur J. Grimley
Nuclear Technology | Volume 92 | Number 2 | November 1990 | Pages 214-228
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT90-A34472
Articles are hosted by Taylor and Francis Online.
High-burnup uranium dioxide reactor fuel was heated in-pile at ∼2490 K in a reducing atmosphere (33% H2 in argon) for 16 min. Fission product aerosols and vapors released from the fuel were collected on a series of sequentially opened filters; the fractions of the original fuel inventory collected on the filters were f Cs = 0.56, f I = 0.38, f Ba = 0.078, f Sr = 0.053, f Eu = 0.064, and f Te < 0.002. The measured release rates for nonvolatile fission products were much higher than predicted by existing release codes, whereas tellurium release was much lower. Posttest examination of the fuel indicates extensive fuel/clad interaction, fuel swelling, and infiltration of the fuel by a zirconium-rich metallic melt; this melt kept oxygen potentials in the fuel very low. The low oxygen potentials and fuel disruption may account for the discrepancy between release codes and the test release results.