ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
V. F. Baston, K. J. Hofstetter, Robert F. Ryan
Nuclear Technology | Volume 76 | Number 3 | March 1987 | Pages 377-389
Technical Paper | Nuclear Safety | doi.org/10.13182/NT87-A33923
Articles are hosted by Taylor and Francis Online.
Chemical and radiochemical analyses of reactor coolant samples taken during defueling of the Three Mile Island Unit-2 (TMI-2) reactor provide relevant data to assist in understanding the solution chemistry of the radionuclides retained within the TMI-2 reactor coolant system. Hydrogen peroxide was added to various plant systems to provide disinfection for microbial contamination and has provided the opportunity to observe radionuclide release under different oxygen chemical potentials. A comparison of the radionuclide release rates with and without hydrogen peroxide has been made for these separate but related cases, i.e., the fuel transfer canal and connecting spent-fuel pool A with the TMI-2 reactor plenum in the fuel transfer canal, core debris grab sample laboratory experiments, and the reactor vessel fluid and associated core debris. Correlation and comparison of these data indicate a physical parameter dependence (surface-to-volume ratio) affecting all radionuclide release; however, selected radionuclides also demonstrate a chemical dependence release under the different oxygen chemical potentials.