ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Constantine P. Tzanos
Nuclear Technology | Volume 183 | Number 1 | July 2013 | Pages 88-100
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT13-A16994
Articles are hosted by Taylor and Francis Online.
Heat transfer coefficients have been computed for flow in a pipe and flow between two plates with correlations and turbulence models based on Reynolds Averaging of the Navier-Stokes (RANS) equations. Predictions of the correlations and those of RANS turbulence models have been compared with experimental data of flow in a pipe. The correlations considered are those of Dittus-Boelter, Seider-Tate, Petukhov, and Sleicher-Rouse, while the turbulence models include the standard high Reynolds number, the Reynolds stress model, the low Reynolds number, and the v2f model. There are significant differences in the predictions of the correlations as well as in those of the turbulence models. Although computational fluid dynamics simulations have wider applicability and provide more information than simulations using correlations, the heat transfer coefficient predicted by the turbulence models is not always more accurate than that predicted by correlations. The discrepancy in the heat transfer coefficient predicted by the turbulence models is due mainly to discrepancies in the prediction of turbulence near the wall and to the uncertainty in the value of the turbulent Prandtl number.