ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
Anthony M. Scopatz, Erich A. Schneider, Jun Li, Man-Sung Yim
Nuclear Technology | Volume 183 | Number 1 | July 2013 | Pages 45-61
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-A16991
Articles are hosted by Taylor and Francis Online.
Technology development and deployment decisions are justified by weighing their costs against the expected benefits. Multiple nuclear fuel cycle (NFC) simulation models have been devised, some with the aim of quantifying cyclewide sensitivities to variations from base-case scenarios. Base-case sensitivity studies often perturb only one parameter at a time and only in the region around the initial value. This paper details a sensitivity study methodology that applies entropy-based statistical methods of information theory to describe outcomes produced by an NFC model. This supersedes past efforts at sensitivity and uncertainty analysis by allowing a much larger space to be explored. Here, 30 independent fuel cycle parameters for a fast reactor-light water reactor hybrid scenario are varied simultaneously and stochastically. This fuel cycle schema was chosen as a well-known, sufficiently complex model; the underlying statistical methods could be applied to any cycle. This study uses the uncertainty coefficient computed from contingency tables (CTs) to represent the sensitivity of a technology-defining input to the response. The response of interest here was taken to be the deep geologic repository capacity for a given realization of fuel cycle inputs. After computing the uncertainty coefficients, the inputs themselves are sorted based on decreasing sensitivities. Fast reactor used fuel plutonium separations were found to be most important to the cycle. Furthermore, to represent input covariances (the effect of one input on the sensitivity of a second input to the response), a new measure is defined on three-dimensional CTs. This metric is the coefficient of the variation of uncertainty coefficient of two-dimensional slices of the original table. Sorting by this sensitivity of sensitivity metric, the input pair of fast reactor americium separations together with high-level-waste storage time was found to have the largest joint effect on the repository capacity.