ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
V. Vallet, B. Gastaldi, J. Politello, A. Santamarina, L. Van Den Durpel
Nuclear Technology | Volume 182 | Number 2 | May 2013 | Pages 187-206
Regular Technical Paper | Special Issue on the Symposium on Radiation Effects in Ceramic Oxide and Novel LWR Fuels / Fission Reactors | doi.org/10.13182/NT13-A16430
Articles are hosted by Taylor and Francis Online.
Pressurized water reactors (PWRs) are likely to produce the major portion of nuclear electricity during the 21st century. Nevertheless, even with the recycling of plutonium within MOX fuel, the utilization rate of uranium is very low and can be improved. Indeed, it grows significantly with the conversion ratio (CR) above the value of 0.8. The CR measures the competition between the production and the consumption rate of fissile isotopes as a function of the burnup. Thus, a CR higher than unity corresponds to a breeder reactor. The CR is the key factor that must be improved to allow a better use of natural uranium resources. A way to improve the CR would be to use thorium instead of uranium as a fertile material through the excellent qualities of its daughter, 233U.Consequently, the aim of this paper is to investigate the use of thorium in high conversion pressurized water reactors (HCPWR) with a reduced moderator-to-fuel volume ratio using a high plutonium content in a hexagonal lattice. This study focuses on two heterogeneous concepts that fulfill the following criteria: a large production of 233U, the respect of safety aspects, and a cycle length higher or equal to 300 equivalent full-power days. The first core, named M-ThPu, has 21% of fertile fuel assemblies composed of depleted uranium and 79% of MOX fuel assemblies containing ThPuO2 fuel, whereas the second core, named FA-Th, has ThO2 fertile assemblies and UdepletedPuO2 fuel assemblies, including axial layers of depleted uranium only. For each concept, the recycling of 233U with thorium in order to decrease the plutonium content in core has also been discussed. The conclusion for both concepts is that [approximately]25% of the PWR (with UOX fuel) could be replaced by HCPWR if 233U is reintroduced directly in each core concept. Therefore, this transition study shows no penalty in terms of natural uranium economy in moving toward a thorium fuel cycle in combination with the existing uranium cycle.