ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
B. Michel, C. Nonon, J. Sercombe, F. Michel, V. Marelle
Nuclear Technology | Volume 182 | Number 2 | May 2013 | Pages 124-137
Technical Paper | Special Issue on the Symposium on Radiation Effects in Ceramic Oxide and Novel LWR Fuels / Fuel Cycle and Management | doi.org/10.13182/NT13-A16424
Articles are hosted by Taylor and Francis Online.
This paper focuses on the PLEIADES fuel performance software environment and its application to the modeling of pellet-cladding interaction (PCI). The PLEIADES platform has been under development for 10 yr; a unified software environment, including the multidimensional finite element solver CAST3M, has been used to develop eight computation schemes now under operation. Among the latter, the ALCYONE application is devoted to pressurized water reactor fuel rod behavior. This application provides a three-dimensional (3-D) model for a detailed analysis of fuel element behavior and enables validation through comparing simulation and postirradiation examination results (cladding residual diameter and ridges, dishing filling, pellet cracking, etc.). These last years the 3-D computation scheme of the ALCYONE application has been enriched with a complete set of physical models to take into account thermomechanical and chemical-physical behavior of the fuel element under irradiation. These models have been validated through the ALCYONE application on a large experimental database composed of approximately 400 study cases. The strong point of the ALCYONE application concerns the local approach of stress-corrosion-cracking rupture under PCI, which can be computed with the 3-D finite element solver.Further developments for PCI modeling in the PLEIADES platform are devoted to a new mesh refinement method for assessing stress-and-strain concentration (multigrid technique) and a new component for assessing fission product chemical recombination.