ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
T. G. Godfrey, D. L. McElroy, Z. L. Ardary
Nuclear Technology | Volume 22 | Number 1 | April 1974 | Pages 94-107
Technical Paper | Fusion Reactor Materials / Material | doi.org/10.13182/NT74-A16278
Articles are hosted by Taylor and Francis Online.
The thermal conductivity, λ, of three samples of oriented fibrous carbon insulation of possible interest to fusion reactors was measured from 300 to 1300°K in a radial heat-flow apparatus. Samples of 0.18 g/cm3 density were prepared by a vacuum filtration process from carbon fibers and powdered phenolic resin and were characterized after carbonization. The λ of these low-density composites depended on both the heat treatment temperature and the fiber orientation. For samples heat treated at 1575°K, the room-temperature λ perpendicular to the planes of fibers was ∼0.5 mW/(cm °K) and was three times as high in the direction parallel to the planes. At 1000°K, the λ in both directions had doubled, primarily because of the positive dλ/dT of the amorphous carbon fibers. Material heat treated at 2775°K had a significantly higher room-temperature λ and a negative dλ/dT, indicating that a slight degree of ordering or graphiti-zation had occurred in the fibers during heat treatment. At high temperatures, the λ of all three samples increased markedly because of radiative heat transport.