ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Catharina Nästrén, Asunción Fernandéz-Carretero, Joseph Somers
Nuclear Technology | Volume 181 | Number 2 | February 2013 | Pages 331-336
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-A15787
Articles are hosted by Taylor and Francis Online.
Use of composites of actinide oxides dispersed in a Mo metal matrix is a recent inert matrix fuel concept for the transmutation of Pu and the minor actinides (Np, Am, and Cm). These elements are present in spent nuclear fuel, and their long-term radiotoxicity can be minimized if they are recovered from the fuel and irradiated in dedicated targets in nuclear reactors. The synthesis of such highly radioactive fuels is not simple, and given the high radiotoxicity of Am, the safety of operation of such a process must be examined for production of small-scale analytical batches. Infiltration of americium nitrate into porous PuO2 beads has potential safety bonuses. The beads are produced by a sol-gel external gelation route. Tests have been developed here with CeO2, as a surrogate for PuO2, and have been optimized for both bead production and pelletization of a blend of calcined beads and Mo powder. Addition of carbon to the sol-gel feed solution and its subsequent pyrolysis provides a means to optimize the porosity of the oxide beads. The carbon acts as a pore former. The highest-quality product meeting typical fuel specifications required addition of 20 g/l carbon in the sol-gel feed and calcination of the CeO2 beads at 800°C. Subsequent Mo cermet composites with 20 or 40 vol% of ceramic reached densities in excess of 90% of the theoretical value as is required for nuclear reactor applications. Finally, the step from CeO2 surrogates to (Pu, Am)O2 targets has been made and pellets of excellent quality produced.