ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
MIT’s nuclear professional courses benefit United States—and now Australia too
Some 30 nuclear engineering departments at universities across the United States graduate more than 900 students every year. These young men and women are the present and future of the domestic nuclear industry as it seeks to develop and deploy advanced nuclear energy technologies, grow its footprint on the power grid, and penetrate new markets while continuing to run the existing fleet of reactors reliably and economically.
Florent Heidet, Ehud Greenspan
Nuclear Technology | Volume 181 | Number 2 | February 2013 | Pages 251-273
Technical Paper | Fission Reactors/Fuel Cycle and Management | doi.org/10.13182/NT13-A15782
Articles are hosted by Taylor and Francis Online.
A preliminary feasibility study is performed for a sodium-cooled breed-and-burn (B&B) fast reactor core for achieving high uranium utilization without solid fission product separation that could fit within a reactor vessel of the dimensions of SuperPRISM (S-PRISM). This 1000-MW(thermal) B&B core is to be fueled with depleted uranium with the exception of the fissile loading required for achieving initial criticality. When the fuel reaches its radiation damage limit, it is reconditioned using the melt-refining process and reloaded into the core until it runs out of reactivity.It is found that the maximum burnup at which the S-PRISM-sized B&B core can be designed to discharge its fuel is 43% fissions per initial metal atom. The corresponding uranium utilization is nearly 90 times higher than that of a light water reactor. The achievable burnup strongly depends on the fuel volume fraction but is almost insensitive to the core power density, fuel-reconditioning frequency, and duration of the fuel-reconditioning process.