ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
National awards presented at ANS Winter Conference
One of the few constants at American Nuclear Society national meetings is the recognition of exceptional individuals in the nuclear community. ANS President Lisa Marshall has named this season’s award recipients, who received recognition at this week's Winter Conference and Expo in Orlando, Fla.
ANS also announced the winners of awards presented by the Society’s professional divisions. These awards have been mailed to the recipients, and the divisions have recognized or will recognize honorees at various division functions and meetings this fall. The 19 professional divisions of ANS are constituent units and represent a vast array of nuclear science and technology disciplines.
Shane Park, Hyun Sun Park, Gyoodong Jeun, Bum Jin Cho
Nuclear Technology | Volume 181 | Number 1 | January 2013 | Pages 227-239
Technical Paper | Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Thermal Hydraulics | doi.org/10.13182/NT13-A15770
Articles are hosted by Taylor and Francis Online.
Particle mixing and sedimentation, related to corium debris bed formation and coolability in severe accidents, is investigated using a new computational fluid dynamics tool: the Analysis of Debris Dynamics and Agglomeration (ADDA) code. ADDA was developed based on an enhanced numerical method combining the moving particle semi-implicit algorithm with a rigid body dynamic model. The analysis successively simulates the entire process of debris bed formation, including corium jet breakup, mixing, and sedimentation. The methodology allows identification of key characteristics in the formation of the corium debris bed. Two-dimensional (2-D) and three-dimensional (3-D) simulations were utilized to model the detailed flow structures and mixing phenomena, along with the final sedimentation process, and were compared to the Q21 QUEOS test performed at Forschungszentrum Karlsruhe, Germany. For the analysis of debris bed formation, it is recommended that full 3-D simulations be utilized to provide enhanced accuracy related to corium debris field prediction. The 2-D simulations were found to be insufficient because of the debris field dependence on particle agglomeration and mixing, prior to debris settling.