ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Shane Park, Hyun Sun Park, Gyoodong Jeun, Bum Jin Cho
Nuclear Technology | Volume 181 | Number 1 | January 2013 | Pages 227-239
Technical Paper | Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Thermal Hydraulics | doi.org/10.13182/NT13-A15770
Articles are hosted by Taylor and Francis Online.
Particle mixing and sedimentation, related to corium debris bed formation and coolability in severe accidents, is investigated using a new computational fluid dynamics tool: the Analysis of Debris Dynamics and Agglomeration (ADDA) code. ADDA was developed based on an enhanced numerical method combining the moving particle semi-implicit algorithm with a rigid body dynamic model. The analysis successively simulates the entire process of debris bed formation, including corium jet breakup, mixing, and sedimentation. The methodology allows identification of key characteristics in the formation of the corium debris bed. Two-dimensional (2-D) and three-dimensional (3-D) simulations were utilized to model the detailed flow structures and mixing phenomena, along with the final sedimentation process, and were compared to the Q21 QUEOS test performed at Forschungszentrum Karlsruhe, Germany. For the analysis of debris bed formation, it is recommended that full 3-D simulations be utilized to provide enhanced accuracy related to corium debris field prediction. The 2-D simulations were found to be insufficient because of the debris field dependence on particle agglomeration and mixing, prior to debris settling.