ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Kwang Soon Ha, Fan-Bill Cheung, Jinho Song, Rae Joon Park, Sang Baik Kim
Nuclear Technology | Volume 181 | Number 1 | January 2013 | Pages 196-207
Technical Paper | Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Thermal Hydraulics | doi.org/10.13182/NT13-A15767
Articles are hosted by Taylor and Francis Online.
Boiling-induced natural-circulation flow in various engineered cooling channels is modeled and solved by considering the conservation of mass, momentum, and energy in the two-phase mixture, along with the two-phase friction drop and void fraction. The model is applied to estimate the induced mass flow rates through a uniform annular gap and a nonuniform annular gap between the reactor vessel and insulation under the in-vessel corium retention-external reactor vessel cooling conditions, and in the engineered corium cooling system of an ex-vessel core catcher during a severe accident. Dependence of the induced flow rate on various system parameters including the channel gap size, inlet diameter, inlet subcooling, and wall heat flux has been identified numerically. Results of the present study provide useful information for enhancing the design of engineered cooling channels to assure long-term cooling and retention of corium under severe accident conditions.