ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Azin Behdadi, John C. Luxat
Nuclear Technology | Volume 181 | Number 1 | January 2013 | Pages 157-169
Technical Paper | Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Fission Reactors; Reactor Safety; Thermal Hydraulics | doi.org/10.13182/NT13-A15764
Articles are hosted by Taylor and Francis Online.
Heavy water moderator surrounding each fuel channel is one of the important safety features in CANDU reactors since it provides an in situ passive heat sink for the fuel in situations where other engineered means of heat removal from fuel channels have failed. In a critical-break loss-of-coolant-accident scenario, fuel cooling becomes severely degraded because of rapid flow reduction in the affected flow pass of the heat transport system. This can result in pressure tubes (PTs) experiencing significant heatup during early stages of the accident when coolant pressure is still high, thereby causing uniform thermal creep strain (ballooning) of the PT in contact with its calandria tube (CT). The contact of the hot PT with the CT causes rapid redistribution of stored heat from the PT to the CT and a large heat flux spike from the CT to the moderator fluid. For conditions where subcooling of the moderator fluid is low, this heat flux spike can cause dryout of the CT. This can detrimentally affect channel integrity if the CT postdryout temperature becomes sufficiently high to result in continued thermal creep strain deformation of both the PT and the CT. The focus of this work is to develop a mechanistic model to predict critical heat flux (CHF) on the CT surface following a contact with its PT. A COMSOL multiphysics model using a two-dimensional transient fluid-thermal analysis of the CT surface undergoing heatup is used to predict the flow and temperature profiles on the CT surface. A mechanistic CHF model is to be proposed based on a concept of wall dry patch formation, prevention of rewetting, and subsequent dry patch spreading.