ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
F. Behafarid, D. Shaver, I. A. Bolotnov, S. P. Antal, K. E. Jansen, M. Z. Podowski
Nuclear Technology | Volume 181 | Number 1 | January 2013 | Pages 44-55
Technical Paper | Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Reactor Safety; Thermal Hydraulics | doi.org/10.13182/NT13-A15755
Articles are hosted by Taylor and Francis Online.
The objective of this paper is to give an overview of a multiscale modeling approach to three-dimensional (3-D) two-phase transient computer simulations of the injection of a jet of gaseous fission products into a partially blocked sodium fast reactor (SFR) coolant channel following localized cladding overheat and breach. The phenomena governing accident progression have been resolved at two different spatial and temporal scales by the intercommunicating computational multiphase fluid dynamics codes PHASTA (at direct numerical simulation level) and NPHASE-CMFD (at Reynolds-averaged Navier-Stokes level). The issues discussed in the paper include an overview of the proposed 3-D two-phase-flow models of the interrelated phenomena that occur as a result of cladding failure and the subsequent injection of a jet of gaseous fission products into partially blocked SFR coolant channels and gas-molten-sodium transport along the channels. An analysis is presented on the consistency and accuracy of the models used in the simulations, and the results are shown of the predictions of gas discharge and gas-liquid-metal two-phase flow in a multichannel fuel assembly. Also, a discussion is given of the major novel aspects of the overall work.