ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Hee Cheon No, Sang Jun Ha, Kyung Doo Kim, Hong Sik Lim, Eo Hwak Lee, Hyung Gon Jin
Nuclear Technology | Volume 181 | Number 1 | January 2013 | Pages 24-43
Technical Paper | Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Thermal Hydraulics | doi.org/10.13182/NT13-A15754
Articles are hosted by Taylor and Francis Online.
The Korea nuclear industry has been developing the thermal-hydraulic system analysis Safety and Performance Analysis CodE (SPACE) and the GAs Multicomponent Mixture Analysis (GAMMA) code for safety analysis of pressurized water reactors (PWRs) and high-temperature gas-cooled reactors (HTGRs), respectively. SPACE will replace outdated vendor-supplied codes and will be used for the safety analysis of operating PWRs and for the design of an advanced PWR. SPACE consists of up-to-date physical models of two-phase flow dealing with multidimensional two-fluid, three-field flow. GAMMA consists of multidimensional governing equations consisting of the basic equations for continuity, momentum conservation, energy conservation of the gas mixture, and mass conservation of n species. GAMMA is based on a porous media model so that thermofluid and chemical reaction behaviors in a multicomponent mixture system and heat transfer within solid components, free and forced convection between a solid and a fluid, and radiative heat transfer between solid surfaces can be dealt with. GAMMA has a two-dimensional helium turbine model based on the throughflow calculation and a coupled neutronics-thermal-hydraulic model. Extensive code assessment has been performed for the verification and validation of SPACE and GAMMA.