ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Haihua Zhao, Per F. Peterson
Nuclear Technology | Volume 180 | Number 3 | December 2012 | Pages 422-436
Technical Paper | Special Issue on the Initial Release of MCNP6 / Thermal Hydraulics | doi.org/10.13182/NT12-A15353
Articles are hosted by Taylor and Francis Online.
Generation IV high-temperature-reactor (HTR) systems use closed gas Brayton cycles to realize high thermal efficiency in the range of from 40% to 50% or more. The waste heat is removed through coolers by water at a substantially greater average temperature than in conventional condensing Rankine steam cycles. This paper introduces an innovative advanced multieffect distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system, one can fully utilize the waste heat from closed gas Brayton cycles to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. AMED combined with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV HTRs.