ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
C. Roecker, N. S. Bowden, G. Carosi, M. Heffner, I. Jovanovic
Nuclear Technology | Volume 180 | Number 2 | November 2012 | Pages 231-240
Technical Paper | Radiation Measurements and General Instrumentation | doi.org/10.13182/NT12-A14636
Articles are hosted by Taylor and Francis Online.
Directional detection of fast neutrons emitted by special nuclear materials can be performed with a time projection chamber. This device permits particle identification and full three-dimensional reconstruction of charged-particle tracks produced by interaction of fast neutrons in the chamber active volume. Single-recoil-proton reconstruction allows rapid pointing, while the reconstruction of two recoil protons produced by a single incident neutron event can enable a measurement with very high angular resolution. Kinematic reconstruction algorithms for both of these cases are presented and their performance assessed using data generated by a simple Monte Carlo simulation and experimental data where those exist. The simulation data are also used to estimate the relative efficiency of both neutron imaging modalities as a function of the volume and pressure of the time projection chamber.