ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Jacobus J. Hancke, John C. Barry, Gerrit T. Van Rooyen, Johan P. R. De Villiers
Nuclear Technology | Volume 180 | Number 2 | November 2012 | Pages 149-158
Technical Paper | Fission Reactors | doi.org/10.13182/NT12-A14630
Articles are hosted by Taylor and Francis Online.
Coater parameters such as deposition temperature, volume percent of methyltrichlorosilane, and total gas flow were varied to study the effect on the ratio of defective TRISO nuclear fuel particles. The burn-leach test and other leach tests were performed to determine the defect ratio on samples of particles representing these variations. In the narrow ranges that were used, none of these parameters showed any correlation with the burn-leach result. However, a reduction in the density of the directly underlying carbon layer showed a marked increase in the defect ratio of particles. No trend could be observed when the density of the carbon layer was varied in the range of 1.8 to 2 g/cm3 , specified for TRISO particles. But, when the density was reduced to 1.7 and 1.6 g/cm3 , it was seldom possible to produce a batch that did not leach uranium, in spite of having a good quality SiC layer. This indicates that the integrity of the SiC layer is influenced by the quality of the underlying carbon layer. Mechanical damage is proposed as a mechanism responsible for the defective particles that are detected with the leach methods. This mechanism could be the reason for the variations in the leach results. Calculations and some examples show that all defects are not detected with the leach methods, probably because of the limited duration of these tests.