ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NPR highlights Nuclear Emergency Support Team
The little-known Nuclear Emergency Support Team (NEST) was highlighted recently on the popular NPR show “All Things Considered” and was accompanied by an online feature.
E. Treille, J. Wendling, F. Plas
Nuclear Technology | Volume 174 | Number 3 | June 2011 | Pages 353-363
Technical Paper | TOUGH2 Symposium / Radioactive Waste Management and Disposal | doi.org/10.13182/NT11-A11745
Articles are hosted by Taylor and Francis Online.
The choice of the Callovo-Oxfordian formation in eastern France for construction of a proposed repository for high-level, long-lived radioactive waste (HLW) is based primarily on the low hydraulic conductivity of the clay-rich host rock. This property is also intrinsically linked to a low capacity of the rock to evacuate the significant amounts of hydrogen gas generated over time by processes such as anoxic corrosion of metallic materials and radiolysis of organic waste. The effects of hydrogen production on the behavior and safety performance of the disposal system components must be evaluated for the operating and postclosure periods of the repository. In order to do this, numerical simulations using TOUGH2-MP were performed on a vitrified waste (HLW) disposal cell and its access drift, for the operating period. The objective was to investigate generation and transfer of hydrogen within and outside the disposal cell, coupled with the desaturation of the access drift near field due to the combined action of drift ventilation and the coupled behavior of dry air and hydrogen within the disposal cell. Particular attention was focused on the form of hydrogen (expressed or dissolved), total gas pressure buildup, degree of gas saturation, gas transport pathways, gas concentrations, and gas exchanges between the disposal cell and the access drift.Simulation results show the validity of the conceptual assumption based on anoxic conditions in the useful part of the disposal system. The major part of the hydrogen comes to the access drift during the operating phase. Internal boundaries between interface zones and concrete lining are preferential pathways for the gas transfer.