ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Westinghouse’s lunar microreactor concept gets a contract for continued R&D
Westinghouse Electric Company announced last week that NASA and the Department of Energy have awarded the company a contract to continue developing a lunar microreactor concept for the Fission Surface Power (FSP) project.
N. Kornilov, F.-J. Hambsch, I. Fabry, S. Oberstedt, T. Belgya, Z. Kis, L. Szentmiklosi, S. Simakov
Nuclear Science and Engineering | Volume 165 | Number 1 | May 2010 | Pages 117-127
Technical Paper | doi.org/10.13182/NSE09-25
Articles are hosted by Taylor and Francis Online.
A measurement of the 235U prompt fission neutron spectrum (PFNS) was performed at the Budapest Nuclear Research Reactor at 100 K incident neutron energy. The motivation for this investigation was to verify some literature data measured over the past 20 years that contradict the Los Alamos model, as well as integral data, benchmark (Keff) experiments, and recent spectral data taken at 0.5 MeV incident neutron energy. The measured spectra using three neutron detectors are in excellent agreement with each other. The average spectrum confirms literature data within the error bars in the neutron energy range of 0.7 to 10 MeV. However, the present PFNS shape cannot predict integral experimental data. It seems to be clear now that the disagreement between microscopic and macroscopic data is not connected with a systematic experimental error in the PFNS at low incident neutron energy.