ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Dan G. Cacuci, Mihaela Ionescu-Bujor
Nuclear Science and Engineering | Volume 165 | Number 1 | May 2010 | Pages 18-44
Technical Paper | doi.org/10.13182/NSE09-37B
Articles are hosted by Taylor and Francis Online.
This work presents a rigorous methodology for computing best-estimate predictive results using experimental information in conjunction with models of time-dependent and/or stationary systems. This methodology uses Bayes' theorem in conjunction with information theory to assimilate consistently all available experimental and computational uncertainty-afflicted information (including discretization-modeling errors) for obtaining best-estimate calibrated model parameters and responses, together with correspondingly reduced uncertainties. This new methodology also provides quantitative indicators for assessing the consistency among parameters and responses, for consequent acceptance or rejection of information within the overall assimilation procedure. The companion paper presents a paradigm application of this methodology for obtaining best-estimate parameters for a transient thermal-hydraulic benchmark system pertinent to reactor safety.