ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
G. Leinweber, D. P. Barry, J. A. Burke, N. J. Drindak, Y. Danon, R. C. Block, N. C. Francis, B. E. Moretti
Nuclear Science and Engineering | Volume 164 | Number 3 | March 2010 | Pages 287-303
Technical Paper | doi.org/10.13182/NSE08-76
Articles are hosted by Taylor and Francis Online.
The electron linear accelerator facility at the Rensselaer Polytechnic Institute was used to explore neutron interactions with molybdenum in the energy region from 10 eV to 2 keV. Neutron capture and transmission measurements were performed by the time-of-flight technique. Resonance parameters were extracted from the data using the multilevel R-matrix Bayesian code SAMMY. A table of resonance parameters and their uncertainties is presented. Two transmission measurements were performed at a flight path of 25 m with a 6Li glass scintillation detector. The neutron capture measurements were performed at a flight path of 25 m with a 16-segment sodium iodide multiplicity detector. Nine different thicknesses of elemental molybdenum metal samples ranging from 0.051 mm (0.002 in.) to 6.35 mm (0.250 in.) were measured in either capture or transmission. Reductions in resonance integrals were observed when compared to ENDF/B-VII.0 for six of the seven stable isotopes. The largest reductions were 9% in 97Mo and 11% in 100Mo. The one measured increase in resonance integral relative to ENDF/B-VII.0 occurred in 95Mo, and it was significant (10%). The measured distribution of neutron widths for 95Mo and 97Mo are a better match to a Porter-Thomas distribution than those of ENDF/B-VII.0. Neutron strength functions for 95Mo and 97Mo were measured and compared to ENDF/B-VII.0. The strength of 95Mo and 97Mo are within uncertainties of each other. The measured radiation width distribution for 95Mo and 97Mo are compared to those of ENDF/B-VII.0 and to 2 distributions. Significant aspects of this analysis are the assignment of radiation widths, the determination of the transmission resolution function, and the propagation of experimental uncertainties into resonance parameter uncertainties.