ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Massimiliano Rosa, James S. Warsa, Jae H. Chang
Nuclear Science and Engineering | Volume 164 | Number 3 | March 2010 | Pages 248-263
Technical Paper | doi.org/10.13182/NSE09-26
Articles are hosted by Taylor and Francis Online.
A Fourier analysis is conducted for the discrete ordinates, or SN, approximation of the neutron transport problem solved with Richardson iteration (source iteration) and Richardson iteration preconditioned with transport synthetic acceleration (TSA), using the inexact parallel block-Jacobi (IPBJ) algorithm both in slab and two-dimensional Cartesian geometry. Both traditional, or “beta,” TSA (TTSA) and a modified TSA (MTSA), in which only the scattering in the low-order equations is reduced by some nonnegative factor < 1, are considered.The results for the unaccelerated algorithm show that convergence of IPBJ can degrade, leading in particular to stagnation of the generalized minimum residual method with restart parameter m, GMRES(m), in problems containing optically thin subdomains. The IPBJ algorithm preconditioned with TTSA can be effective, provided the parameter is properly tuned for a given scattering ratio c, but is potentially unstable. Compared to TTSA, MTSA is less sensitive to the choice of , more effective for the same computational effort, measured in terms of the effective scattering ratio c′, and it is unconditionally stable.