ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
High temperature fission chambers engineered for AMR/SMR safety and performance
As the global energy landscape shifts towards safer, smaller, and more flexible nuclear power, Small Modular Reactors (SMRs) and Gen. IV* technologies are at the forefront of innovation. These advanced designs pose new challenges in size, efficiency, and operating environment that traditional instrumentation and control solutions aren’t always designed to handle.
Massimiliano Rosa, James S. Warsa, Jae H. Chang
Nuclear Science and Engineering | Volume 164 | Number 3 | March 2010 | Pages 248-263
Technical Paper | doi.org/10.13182/NSE09-26
Articles are hosted by Taylor and Francis Online.
A Fourier analysis is conducted for the discrete ordinates, or SN, approximation of the neutron transport problem solved with Richardson iteration (source iteration) and Richardson iteration preconditioned with transport synthetic acceleration (TSA), using the inexact parallel block-Jacobi (IPBJ) algorithm both in slab and two-dimensional Cartesian geometry. Both traditional, or “beta,” TSA (TTSA) and a modified TSA (MTSA), in which only the scattering in the low-order equations is reduced by some nonnegative factor < 1, are considered.The results for the unaccelerated algorithm show that convergence of IPBJ can degrade, leading in particular to stagnation of the generalized minimum residual method with restart parameter m, GMRES(m), in problems containing optically thin subdomains. The IPBJ algorithm preconditioned with TTSA can be effective, provided the parameter is properly tuned for a given scattering ratio c, but is potentially unstable. Compared to TTSA, MTSA is less sensitive to the choice of , more effective for the same computational effort, measured in terms of the effective scattering ratio c′, and it is unconditionally stable.