ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Westinghouse’s lunar microreactor concept gets a contract for continued R&D
Westinghouse Electric Company announced last week that NASA and the Department of Energy have awarded the company a contract to continue developing a lunar microreactor concept for the Fission Surface Power (FSP) project.
Massimiliano Rosa, James S. Warsa, Jae H. Chang
Nuclear Science and Engineering | Volume 164 | Number 3 | March 2010 | Pages 248-263
Technical Paper | doi.org/10.13182/NSE09-26
Articles are hosted by Taylor and Francis Online.
A Fourier analysis is conducted for the discrete ordinates, or SN, approximation of the neutron transport problem solved with Richardson iteration (source iteration) and Richardson iteration preconditioned with transport synthetic acceleration (TSA), using the inexact parallel block-Jacobi (IPBJ) algorithm both in slab and two-dimensional Cartesian geometry. Both traditional, or “beta,” TSA (TTSA) and a modified TSA (MTSA), in which only the scattering in the low-order equations is reduced by some nonnegative factor < 1, are considered.The results for the unaccelerated algorithm show that convergence of IPBJ can degrade, leading in particular to stagnation of the generalized minimum residual method with restart parameter m, GMRES(m), in problems containing optically thin subdomains. The IPBJ algorithm preconditioned with TTSA can be effective, provided the parameter is properly tuned for a given scattering ratio c, but is potentially unstable. Compared to TTSA, MTSA is less sensitive to the choice of , more effective for the same computational effort, measured in terms of the effective scattering ratio c′, and it is unconditionally stable.