ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Ce Yi, Alireza Haghighat
Nuclear Science and Engineering | Volume 164 | Number 3 | March 2010 | Pages 221-247
Technical Paper | doi.org/10.13182/NSE09-110
Articles are hosted by Taylor and Francis Online.
In this paper, we present a hybrid formulation/algorithm to solve the linear Boltzmann equation, specifically for application to problems containing regions of low scattering. The hybrid approach uses the characteristics method in low scattering regions, while the remaining regions are treated with the discrete ordinates method (SN). A shared scattering kernel allows an arbitrary order of anisotropic scattering in both block-oriented solvers. A new three-dimensional transport code (TITAN) has been developed based on the hybrid approach. TITAN divides a problem model into coarse meshes (blocks) in the Cartesian geometry. The block-oriented structure allows different fine-meshing schemes (or characteristic ray densities) and angular quadrature sets for different coarse meshes. Angular and spatial projection techniques are developed to transfer angular fluxes on the interfaces of the coarse meshes. We have tested the performance and accuracy of the new hybrid algorithm within the TITAN code for a number of benchmark problems. The results of a computed tomography model and the Kobayashi benchmark problems are presented in this paper. It is demonstrated that while preserving high-level accuracy as compared to reference Monte Carlo simulations, the hybrid algorithm achieves significant computation efficiency as compared to the SN method only.