ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
DOE seeks proposals for AI data centers at Paducah
The Department of Energy’s Office of Environmental Management has issued a request for offer (RFO) seeking proposals from U.S. companies to build and power AI data centers on the DOE’s Paducah Site in Kentucky. Companies are being sought to potentially enter into one or more long-term leasing agreements at the site that would be solely funded by the applicants.
Lei Zhu, Jim E. Morel
Nuclear Science and Engineering | Volume 164 | Number 3 | March 2010 | Pages 205-220
Technical Paper | doi.org/10.13182/NSE08-67
Articles are hosted by Taylor and Francis Online.
We derive three new linear-discontinuous least-squares discretizations for the Sn equations in one-dimensional slab geometry. Standard least-squares methods are not compatible with discontinuous trial spaces, and they are also generally not conservative. Our new methods are unique in that they are based upon a least-squares minimization principle, use a discontinuous trial space, are conservative, and retain the structure of standard Sn spatial discretization schemes. To our knowledge, conservative least-squares spatial discretization schemes have not previously been developed for the Sn equations. We compare our new methods both theoretically and numerically to the linear-discontinuous Galerkin method and the lumped linear-discontinuous Galerkin method. We find that one of our schemes is clearly superior to the other two and offers certain advantages over both of the Galerkin schemes.