ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Michael A. Pope, Jean Tommasi
Nuclear Science and Engineering | Volume 164 | Number 2 | February 2010 | Pages 162-184
Technical Paper | doi.org/10.13182/NSE09-22
Articles are hosted by Taylor and Francis Online.
Reactivity contributions of differences between JEFF-3.1 and ENDF/B-VI.8 were analyzed for six early MASURCA cores of the R-Z program using ERANOS 2.1. These cores were designed such that their neutron spectra would emulate that of an oxide-fueled sodium-cooled fast reactor, some containing enriched uranium and others containing depleted uranium and plutonium. Effects of modeling assumptions and solution methods both in ECCO lattice calculations and in BISTRO Sn flux solutions were first evaluated using JEFF-3.1 cross-section libraries. Comparisons were made between calculated and measured values for reactivity and several spectral indices. Reactivity effects of differences between JEFF-3.1 and ENDF/B-VI.8 were also quantified using perturbation theory analysis. The most important nuclide with respect to reactivity differences between cross-section libraries was 23Na, primarily a result of differences in the angular dependence of elastic scattering, which is more forward peaked in ENDF/B-VI.8 than in JEFF-3.1. Differences in 23Na inelastic scattering cross sections between libraries also generated significant differences in reactivity, more due to the differences in magnitude of the cross sections than to the angular dependence. The nuclide 238U was also found to be important with regard to reactivity differences between the two libraries mostly due to a large effect of inelastic scattering differences and two smaller effects of elastic scattering and fission cross sections. In the cores that contained plutonium, 239Pu fission cross-section differences contributed significantly to the reactivity differences between libraries.