ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Maria Pusa, Jaakko Leppänen
Nuclear Science and Engineering | Volume 164 | Number 2 | February 2010 | Pages 140-150
Technical Paper | doi.org/10.13182/NSE09-14
Articles are hosted by Taylor and Francis Online.
The topic of this paper is the computation of the matrix exponential in the context of burnup equations. The established matrix exponential methods are introduced briefly. The eigenvalues of the burnup matrix are important in choosing the matrix exponential method, and their characterization is considered. Based on the characteristics of the burnup matrix, the Chebyshev rational approximation method (CRAM) and its interpretation as a numeric contour integral are discussed in detail. The introduced matrix exponential methods are applied to two test cases representing an infinite pressurized water reactor pin-cell lattice, and the numerical results are presented. The results suggest that CRAM is capable of providing a robust and accurate solution to the burnup equations with a very short computation time.