ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Oleg Roderick, Mihai Anitescu, Paul Fischer
Nuclear Science and Engineering | Volume 164 | Number 2 | February 2010 | Pages 122-139
Technical Paper | doi.org/10.13182/NSE08-79
Articles are hosted by Taylor and Francis Online.
In this work we describe a polynomial regression approach that uses derivative information for analyzing the performance of a complex system that is described by a mathematical model depending on several stochastic parameters.We construct a surrogate model as a goal-oriented projection onto an incomplete space of polynomials; find coordinates of the projection by regression; and use derivative information to significantly reduce the number of the sample points required to obtain a good model. The simplified model can be used as a control variate to significantly reduce the sample variance of the estimate of the goal.For our test model, we take a steady-state description of heat distribution in the core of the nuclear reactor core, and as our goal we take the maximum centerline temperature in a fuel pin. For this case, the resulting surrogate model is substantially more computationally efficient than random sampling or approaches that do not use derivative information, and it has greater precision than linear models.