ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Hiroki Takezawa, Toru Obara
Nuclear Science and Engineering | Volume 164 | Number 1 | January 2010 | Pages 80-86
Technical Note | doi.org/10.13182/NSE08-91
Articles are hosted by Taylor and Francis Online.
The integral kinetic model is applicable to space-dependent kinetic analysis for any weakly coupled system because of its applicability to any geometry. Transient parameters that describe the time distribution of neutron transport between regions in a system are essential for this model. This paper presents a formula for calculating the parameters based on the nonanalog Monte Carlo neutron transport simulation technique. A continuous-energy Monte Carlo code MVP2.0 was modified to calculate the parameters, and the modification was verified using the static coupled reactor theory. The parameters were calculated in a simple fast-thermal coupled reactor. The results showed a difference in fission starting times between a fast region and a thermal region, which can cause a time lag in the transient behavior between the two regions. The results also revealed the time distribution of neutron energy groups that trigger fissions in each region. A space-dependent kinetic analysis code based on the integral kinetic model is under development, and these parameters can be used in the integral kinetic model to perform space-dependent kinetic analysis for weakly coupled systems.