ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
John Loberg, Michael Österlund, Jan Blomgren, Klaes-Håkan Bejmer
Nuclear Science and Engineering | Volume 164 | Number 1 | January 2010 | Pages 69-79
Technical Paper | doi.org/10.13182/NSE09-17
Articles are hosted by Taylor and Francis Online.
The ratio between the thermal- and fast-neutron fluxes in a boiling water reactor depends on the void fraction. The density of the steam-water mixture present in the core determines the efficiency of the moderation of fast neutrons born in fission; therefore, the void fraction could be determined by means of a simultaneous measurement of the thermal- and fast-neutron fluxes. Such measurement could also be used to investigate channel bow of the nuclear fuel bundles surrounding the detector because of sensitivity of the thermal flux to geometry changes.Calculations have been performed with both lattice and nodal codes to study the behavior of the void fraction correlation to the ratio of the thermal- and fast-neutron fluxes. The results prove the correlation to be nearly linear and robust. The rate of change of the correlation is insensitive to standard reactor operating parameters such as control rods and burnable absorbers; the sensitivity of the ratio to void fraction changes primarily depends on the geometry of the fuel bundles. A linear prediction model was used to represent the nodal code results. The absolute void fraction at over 792 positions in the core could be predicted with an absolute uncertainty of ±1.5%.