ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
Ser Gi Hong, Kang-Seog Kim, Jae Seung Song
Nuclear Science and Engineering | Volume 164 | Number 1 | January 2010 | Pages 33-52
Technical Paper | doi.org/10.13182/NSE09-18
Articles are hosted by Taylor and Francis Online.
This paper analyzes the convergence of the rebalance iteration methods for accelerating the power iteration method of the discrete ordinates transport equation in the eigenvalue problem. The rebalance iteration methods include the coarse mesh rebalance (CMR), the coarse mesh finite difference (CMFD), and the partial current-based CMFD methods. The convergence analysis is performed with the well-known Fourier analysis through linearization. In the linearized form, these rebalance methods are formulated in a unified way where the rebalance methods are different only in a parameter. The analyses are applied for both one- and two-group problems in a homogeneous infinite medium and a finite medium having periodic boundary conditions. The theoretical analysis shows that the convergences of the rebalance methods for the eigenvalue problems are closely related with the ones for the fixed source problems and that the convergences for the eigenvalue problems can be analyzed with the formula for the fixed source problem after transforming the scattering cross sections into a different cross-section set. The numerical tests show that the Fourier convergence analysis provides a reasonable estimate for the numerical spectral radii for the model problems.