ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Guochang Chen, Xichao Ruan, Zuying Zhou, Jingshang Zhang, Bujia Qi, Xia Li, Hanxiong Huang, Hongqing Tang, Qiping Zhong, Jing Jiang, Biao Xin, Jie Bao, Lin Chen
Nuclear Science and Engineering | Volume 163 | Number 3 | November 2009 | Pages 272-284
Technical Paper | doi.org/10.13182/NSE163-272
Articles are hosted by Taylor and Francis Online.
Energy angular neutron emission double-differential cross sections (DDXs) of 6Li and 7Li were measured at incident neutron energies of 8.17 and 10.27 MeV, respectively, using normal and normal + abnormal fast neutron time-of-flight (TOF) spectrometers. The effects of breakup neutrons from a D(d,n) source and the influence of an aluminum container of Li samples, as well as 7Li in the 6Li sample and 6Li in the 7Li sample, on the secondary neutron spectra were eliminated. The data were derived by comparing the net TOF spectra with the calculated spectra using a realistic Monte Carlo simulation. The differential cross sections were determined by comparing the measured and simulated TOF spectra with respect to specific scattering fractions, i.e., with respect to the elastic lines and the resolved inelastic lines related to single levels or level groups, and normalized to n-p scattering. The angular distributions for the 6Li and 7Li elastic and inelastic neutron scattering were obtained also. The angle-integrated cross sections were derived for elastic scattering from 6Li and for the sum of elastic and 0.478-MeV state inelastic scattering from 7Li. Inelastic scattering cross sections were obtained for the 2.186-MeV state in 6Li and the 4.652-MeV state in 7Li. Meanwhile, based on the unified Hauser-Feshbach and exciton model, the calculated results of the DDXs for n + 6,7Li were compared with measurements.