ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Akio Yamamoto, Masahiro Tatsumi, Naoki Sugimura
Nuclear Science and Engineering | Volume 163 | Number 2 | October 2009 | Pages 144-151
Technical Paper | doi.org/10.13182/NSE08-80
Articles are hosted by Taylor and Francis Online.
A new burnup calculation method, called the projected predictor-corrector (PPC) method, is proposed. In comparison with the conventional predictor-corrector (PC) method, a larger time-step size can be used in burnup calculation without losing calculational accuracy. The PPC method is especially useful for Gd-bearing fuel assemblies, for which a fine time step size is necessary in burnup calculations. The PPC method utilizes a correlation between the number density and the reaction rate in each burnable nuclide and improves the accuracy of the microscopic reaction rate in the corrector step by estimating the “projected” reaction rate. The additional computation time for the PPC method is negligible. Verification calculations are performed for 17 × 17 pressurized water reactor fuel assemblies with 16 Gd-bearing fuel rods. The content of Gd in Gd-bearing fuel rods is set to be 2 to 10 wt%. The calculation results indicate that the PPC method shows comparable accuracy to conventional PC methods whose step time size is about half; i.e., the number of burnup steps in the PPC method can be reduced to about half of that in the conventional PC method.