ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Samet Y. Kadioglu, Dana A. Knoll, Cassiano de Oliveira
Nuclear Science and Engineering | Volume 163 | Number 2 | October 2009 | Pages 132-143
Technical Paper | doi.org/10.13182/NSE09-07
Articles are hosted by Taylor and Francis Online.
Coupling neutronics to thermomechanics is important for the analysis of fast burst reactors because the criticality and safety study of fast burst reactors depends on the thermomechanical behavior of fuel materials. For instance, the shutdown mechanism or the transition between supercritical and subcritical states is driven by the fuel material expansion or contraction. The material expansion is due to the temperature gradient that results from fission power. In this paper, we introduce a numerical model for coupling of neutron diffusion and thermomechanics in fast burst reactors. The goal is to have a better understanding of the relation between the reactivity insertion and the thermomechanical response of fuel materials. We perform a nondimensional analysis of the coupled system that provides insight into the behavior of the transient. We also provide a semianalytical solution model to the coupled system for partial verification of our numerical solutions. We studied material behavior corresponding to different levels of reactivity insertion.