ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
J. Kópházi, D. Lathouwers, J. L. Kloosterman
Nuclear Science and Engineering | Volume 163 | Number 2 | October 2009 | Pages 118-131
Technical Paper | doi.org/10.13182/NSE163-118
Articles are hosted by Taylor and Francis Online.
This paper presents the development, validation, and results of a three-dimensional, time-dependent, coupled-neutronics-thermal-hydraulic calculational scheme for channel-type molten salt reactors (MSRs). The reactor physics part is based on diffusion theory, extended by a term representing the flow of the fuel through the core. The calculation of the temperature field is done by modeling all fuel channels, which are coupled to each other by a three-dimensional heat conduction equation. For the purpose of validation, the results of the MSR Experiment (MSRE) natural-circulation experiment and the thermal feedback coefficients of the reactor have been calculated and compared.With the aid of a code system developed to implement this scheme, calculations were carried out for the normal operating state of the MSRE and some debris-induced channel-blocking-incident transients. In the case of the MSRE, it is shown that the severity of such an incident strongly depends on the degree of channel blocking and that high-temperature gradients in the moderator can connect thermally the adjacent fuel channels. Results are included for an unblocking transient (i.e., the debris suddenly exits the core, and the fuel flow reverts to the normal operating pattern), and it was demonstrated that during the unblocking large power peaks can be induced.