ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
J. Kópházi, D. Lathouwers, J. L. Kloosterman
Nuclear Science and Engineering | Volume 163 | Number 2 | October 2009 | Pages 118-131
Technical Paper | doi.org/10.13182/NSE163-118
Articles are hosted by Taylor and Francis Online.
This paper presents the development, validation, and results of a three-dimensional, time-dependent, coupled-neutronics-thermal-hydraulic calculational scheme for channel-type molten salt reactors (MSRs). The reactor physics part is based on diffusion theory, extended by a term representing the flow of the fuel through the core. The calculation of the temperature field is done by modeling all fuel channels, which are coupled to each other by a three-dimensional heat conduction equation. For the purpose of validation, the results of the MSR Experiment (MSRE) natural-circulation experiment and the thermal feedback coefficients of the reactor have been calculated and compared.With the aid of a code system developed to implement this scheme, calculations were carried out for the normal operating state of the MSRE and some debris-induced channel-blocking-incident transients. In the case of the MSRE, it is shown that the severity of such an incident strongly depends on the degree of channel blocking and that high-temperature gradients in the moderator can connect thermally the adjacent fuel channels. Results are included for an unblocking transient (i.e., the debris suddenly exits the core, and the fuel flow reverts to the normal operating pattern), and it was demonstrated that during the unblocking large power peaks can be induced.