ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
R. Nyqvist, D. Anderson, M. Lisak
Nuclear Science and Engineering | Volume 163 | Number 1 | September 2009 | Pages 85-90
Technical Note | doi.org/10.13182/NSE163-85
Articles are hosted by Taylor and Francis Online.
Recently, an expansion of the Boltzmann scattering operator describing the angular spreading of particle beams was given that included the effects of large angle scattering processes, thus generalizing the classical Fokker-Planck equation, valid in the limit of small angle scattering. The present work aims at making an analytical comparison between predictions based on the classical Fokker-Planck equation and those based on a generalized one, which includes a first-order correction term in the expansion of the Boltzmann scattering operator. The analysis is carried out for thin slabs where backscattering effects can be neglected and makes use of a moment approach, which leads to an infinite system of recursively coupled ordinary differential equations. The system is truncated in a consistent manner, and the effects of large angle scattering on the evolution of the moments are determined in explicit analytical form. An approximate similarity solution of the generalized Fokker-Planck equation is also found, and the results of both approaches provide a clear picture of the increased diffusive beam spreading due to large angle scattering. A comparison with previously published Monte Carlo simulation results shows good agreement.