ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
R. M. Ferrer, Y. Y. Azmy
Nuclear Science and Engineering | Volume 162 | Number 3 | July 2009 | Pages 215-233
Technical Paper | doi.org/10.13182/NSE162-215
Articles are hosted by Taylor and Francis Online.
An error analysis is performed for the nodal integral method (NIM) applied to the one-speed, steady-state neutron diffusion equation in two-dimensional Cartesian geometry. The geometric configuration of the problem employed in the analysis consists of a homogeneous-material unit square with Dirichlet boundary conditions on all four sides. The NIM equations comprise three sets of equations: (a) one neutron balance equation per computational cell, (b) one current continuity condition per internal x = const computational cell edge, and (c) one current continuity condition per internal y = const computational cell edge. A Maximum Principle is proved for the solution of the NIM equations, followed by an error analysis achieved by applying the Maximum Principle to a carefully constructed mesh function driven by the truncation error or residual. The error analysis establishes the convergence of the NIM solution to the exact solution if the latter is twice differentiable. Furthermore, if the exact solution is four times differentiable, the NIM solution error is bounded by an O(a2) expression involving bounds on the exact solution's fourth partial derivatives, where a is half the scaled length of a computational cell. Numerical experiments are presented whose results successfully verify the conclusions of the error analysis.