ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
R. M. Ferrer, Y. Y. Azmy
Nuclear Science and Engineering | Volume 162 | Number 3 | July 2009 | Pages 215-233
Technical Paper | doi.org/10.13182/NSE162-215
Articles are hosted by Taylor and Francis Online.
An error analysis is performed for the nodal integral method (NIM) applied to the one-speed, steady-state neutron diffusion equation in two-dimensional Cartesian geometry. The geometric configuration of the problem employed in the analysis consists of a homogeneous-material unit square with Dirichlet boundary conditions on all four sides. The NIM equations comprise three sets of equations: (a) one neutron balance equation per computational cell, (b) one current continuity condition per internal x = const computational cell edge, and (c) one current continuity condition per internal y = const computational cell edge. A Maximum Principle is proved for the solution of the NIM equations, followed by an error analysis achieved by applying the Maximum Principle to a carefully constructed mesh function driven by the truncation error or residual. The error analysis establishes the convergence of the NIM solution to the exact solution if the latter is twice differentiable. Furthermore, if the exact solution is four times differentiable, the NIM solution error is bounded by an O(a2) expression involving bounds on the exact solution's fourth partial derivatives, where a is half the scaled length of a computational cell. Numerical experiments are presented whose results successfully verify the conclusions of the error analysis.