ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
R. S. Keshavamurthy, R. S. Geetha
Nuclear Science and Engineering | Volume 162 | Number 2 | June 2009 | Pages 192-199
Technical Note | doi.org/10.13182/NSE162-192
Articles are hosted by Taylor and Francis Online.
Steffensen's inequality is used to obtain new properties of nuclear Doppler broadening functions. We apply the inequality on subinterval integrals of these functions to obtain bounds that provide new approximations for the Doppler broadening functions. The Taylor series is used to further simplify the analytic approximations for the bounds to sums of terms of elementary transcendental functions. The approximations for bounds are able to reproduce the functions with any desired decimal place accuracy. The average of the lower and upper bounds provide better approximations to achieve the same level of decimal place accuracy and are much more efficient computationally. The method is capable of computing the functions to arbitrary accuracy as the inequality essentially gives the bounds of the functions.