ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Y. S. Rana, S. B. Degweker
Nuclear Science and Engineering | Volume 162 | Number 2 | June 2009 | Pages 117-133
Technical Papers | doi.org/10.13182/NSE08-13
Articles are hosted by Taylor and Francis Online.
In our earlier papers, we developed a theory of reactor noise for accelerator-driven systems (ADSs). It was shown that reactor noise in ADSs is different from that in critical or radioactive source-driven subcritical systems because of the periodically pulsed source and its non-Poisson character. Various noise descriptors, such as Rossi alpha, Feynman alpha (or variance to mean), power spectral density, and cross-power spectral density, were derived, for a periodically pulsed source, including correlation between different pulses and finite pulses of different shapes. Throughout the work we restricted ourselves to the case of prompt neutrons only. In the present paper, we extend the theory to the delayed neutron case. Feynman-alpha and Rossi-alpha formulas are derived by considering the source to be a periodically pulsed non-Poisson source, without correlations between different pulses. Each pulse is assumed to be a delta function. The calculations are carried out in the time domain that leads to closed-form expressions for these descriptors.