ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
M. T. Pigni, M. Herman, P. Oblozinsky
Nuclear Science and Engineering | Volume 162 | Number 1 | May 2009 | Pages 25-40
Technical Paper | doi.org/10.13182/NSE162-25
Articles are hosted by Taylor and Francis Online.
We generated, for the first time, a very comprehensive set of estimates of cross-section covariance data in the neutron energy range of 5 keV to 20 MeV. The covariance matrices were obtained for 307 materials, from 19F to 209Bi, covering structural materials, fission products, and heavy nonfissile nuclei. These results offer model-based, consistent assessments of covariance data for nuclear criticality safety applications. The evaluation methodology combines the nuclear reaction model code EMPIRE, which calculates the sensitivity of the cross sections to nuclear reaction model parameters, and the Bayesian code KALMAN, which propagates uncertainties of the model parameters to these cross sections. Taking into account the large number of materials studied, we refer only marginally to experimental data. The covariances were derived from the perturbation of several key model parameters selected by the sensitivity analysis. These parameters refer to the optical model potential, the level densities, and the strength of the preequilibrium emission. Our work represents the first attempt to generate neutron cross-section covariances on such a large scale.