ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Waste Management 2025: Building a new era of nuclear
While attendance at the 2025 Waste Management Conference was noticeably down this year due to the ongoing federal retrenchment, the conference, held March 9-13 in Phoenix, Ariz., still drew a healthy and diverse crowd of people working on the back end of the nuclear fuel cycle, both domestically and internationally.
Imam Kambali, Angga Dwi Saputra, Marlina Marlina, Isdandy Rezki Febrianto, Ihwanul Aziz, Wira Y Rahman, Kristedjo Kurnianto, Rasito Tursinah, Rien Ritawidya, Ratna Dini Haryuni, Parwanto Parwanto, Rajiman Rajiman, Nur Huda, Kartika Fajarwati
Nuclear Science and Engineering | Volume 199 | Number 5 | May 2025 | Pages 829-837
Research Article | doi.org/10.1080/00295639.2024.2392070
Articles are hosted by Taylor and Francis Online.
The target holder, as part of the target system for cyclotron-based radioisotope production, plays a crucial role in successful radioisotope production. The target holder has to be designed and developed so that it will not deform or melt should a beam of energetic particles irradiate the target. In this work, we develop and test a target holder for 64Cu radioisotope production. The thermal distribution and structural analysis are simulated using ANSYS software. Based on the ANSYS simulation results, a maximum temperature of 84°C occurred on the titanium foil, while the maximum temperature in the target holder body was 35.6°C when an 11-MeV proton beam with a beam current of 25 μA was bombarded on the target holder.
We successfully test the target holder, and for the first time, we experimentally produce a 64Cu radioisotope by secondary neutron irradiation of the 64ZnO target. Using 11-MeV protons with a proton beam current of 25 μA incident on a 1-mm Ti foil for 5 min, we were able to generate secondary neutrons, and then the secondary neutrons irradiated 1 g of the enriched 64ZnO target. Copper-64 produced from the 64Zn(n,p)64Cu nuclear reaction was eventually detected using a portable gamma spectrometer, and its radioactivity was measured using a dose calibrator. For the first time, this experimental study confirmed that as much as 48.8 ± 6.2 MBq/μAh radioactivity of 64Cu was produced with no observed radioactive impurities.