ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Waste Management 2025: Building a new era of nuclear
While attendance at the 2025 Waste Management Conference was noticeably down this year due to the ongoing federal retrenchment, the conference, held March 9-13 in Phoenix, Ariz., still drew a healthy and diverse crowd of people working on the back end of the nuclear fuel cycle, both domestically and internationally.
Dakota Santana, D. Keith Hollingsworth
Nuclear Science and Engineering | Volume 199 | Number 4 | April 2025 | Pages 653-678
Research Article | doi.org/10.1080/00295639.2024.2380633
Articles are hosted by Taylor and Francis Online.
This work provides an overview of vaporization phenomena in liquid-core nuclear thermal rockets to aid in unifying modeling assumptions by characterizing the impact of vaporization. Historical variations in vapor modeling have led to reported specific impulses ranging from 1000 to 2000s following model refinements in the 1960s and the omission of vaporization consideration post 1990. The only preexisting vapor transport study to not rely on the Reynold’s analogy was performed for the radiator design.
This paper performs the first such analysis for the bubbler design, given its renewed interest. Consideration is given to potential centrifugal species separation, proposed fuel mixtures, interplay between chamber pressure and vaporization, impacts on propellant thermoproperties, evaporative cooling, power requirements for vapor separation, and the complexity of hydrocarbon interactions under the proposed chamber conditions.
The bubbler design is shown to be well approximated as fully saturated, whereas the radiator and droplet designs may be configured to reduce vaporization to 20% saturation. Characterization of vaporization within liquid cores is essential to early design decisions, such as overall archetype, defining the operating point, and liquid media composition. For a threshold temperature corresponding to around 10% of the propellant being vapor by mass, further increases in temperature begin reducing the specific impulse. Below this threshold temperature, the impact of vaporization on thermal modeling with the chamber is likely negligible. Above this threshold temperature, higher-fidelity thermal modeling will be required, and the work required to separate the vapor begins exceeding 100 kW/(kgH/s).
Nozzle kinetics are applied to liquid cores for the first time, showing that specific impulses increase with increasing chamber pressure contrary to historical findings. Historically, modeled uranium-zirconium-carbon mixtures are predicted to reach a specific impulse up to 1260 s. A uranium-tungsten-carbon fuel mixture yielded the best theoretical specific impulse of slightly under 1400 s; however, no nucleonic or thermal analysis has been conducted with this fuel composition.