ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Waste Management 2025: Building a new era of nuclear
While attendance at the 2025 Waste Management Conference was noticeably down this year due to the ongoing federal retrenchment, the conference, held March 9-13 in Phoenix, Ariz., still drew a healthy and diverse crowd of people working on the back end of the nuclear fuel cycle, both domestically and internationally.
H. Kumawat
Nuclear Science and Engineering | Volume 199 | Number 4 | April 2025 | Pages 550-556
Review Article | doi.org/10.1080/00295639.2024.2380636
Articles are hosted by Taylor and Francis Online.
The Monte Carlo Nucleon Transport (MONC) code for nucleon transport is extended for below 20-MeV proton transport using the ENDF and EXFOR databases. It is used to simulate the p + 7Li reaction up to 20-MeV proton energies, with the produced neutron spectra reported here. The simulated results are compared with the calculated values from other available codes like PINO, EPEN, and SimLiT, as well as experimental data. The spectra reported here can be used to get the neutron cross section for the quasi-monoenergetic neutron reaction and will help to subtract the low-energy contribution. The primary neutron spectra and its transport are useful, as this reaction has the potential for accelerator-based boron neutron capture therapy. The backing materials are used to fully stop the proton beam, hence the contributions of the neutrons from backing materials are estimated. It is found that tantalum is a good backing material below ~8 MeV and that carbon is better at higher energies.