ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Waste Management 2025: Building a new era of nuclear
While attendance at the 2025 Waste Management Conference was noticeably down this year due to the ongoing federal retrenchment, the conference, held March 9-13 in Phoenix, Ariz., still drew a healthy and diverse crowd of people working on the back end of the nuclear fuel cycle, both domestically and internationally.
Xiangyun Zhou, Shixiang Hu, Weiding Zhuo, Long Wang, De’An Sun, Luqiang He, You Gao, Xiayang Zhang
Nuclear Science and Engineering | Volume 199 | Number 3 | March 2025 | Pages 490-505
Research Article | doi.org/10.1080/00295639.2024.2372513
Articles are hosted by Taylor and Francis Online.
Temperature distribution plays a crucial role in the safety performance assessment and thermal dimensioning design in a deep geological repository for disposing high-level waste. In this study, a two-dimensional axisymmetric model of a single container for heat transfer was created. The fully analytical solution to temperature distribution in the repository was derived by utilizing the methods of separation of variables, impulse theorem, and Fourier transform.
The fully analytical solution was validated by comparing with the existing semi-analytical solution and line heat source solution. The temperature change in the near field around the container was analyzed using the present solution, and the influences of different parameters on the container surface temperature were investigated. Furthermore, the proposed fully analytical solution was used to predict the results of the in situ test.
The findings indicate that the temperature in the buffer layer rapidly increases and reaches its peak value within the first 2 years, then gradually decreases thereafter with time. The thickness of the bentonite pellet layer had a greater effect on the container surface temperature than that of the bentonite block layer. A comparison between the fully analytical solution and the results of the in situ heating test demonstrated that the proposed fully analytical solution can accurately predict the temperature variations in the in situ heating test.