ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Cheol Ho Pyeon, Akito Oizumi, Ryota Katano, Masahiro Fukushima
Nuclear Science and Engineering | Volume 199 | Number 3 | March 2025 | Pages 429-444
Research Article | doi.org/10.1080/00295639.2024.2380624
Articles are hosted by Taylor and Francis Online.
Experimental analyses of 237Np, 241Am, and 243Am fission, as well as 237Np capture reaction rates, are conducted with the Serpent 2 code together with ENDF/B-VIII.0 and JENDL-5 using experimental data for the neutron spectra of thermal and intermediate regions obtained in the solid-moderated and solid-reflected cores with highly enriched uranium fuel at the Kyoto University Critical Assembly. Also, uncertainty quantification of the fission and capture reaction rate ratios of the test samples of 237Np, 241Am, and 243Am with reference samples of 235U and 197Au are evaluated by the MARBLE code system.
In terms of the fission reaction rate ratios of 237Np/235U, 241Am/235U, and 243Am/235U, a comparison between experiments and Serpent 2 calculations shows an accuracy of about 5%, 15%, and 10%, respectively, together with ENDF/B-VIII.0 and JENDL-5. For the capture reaction rate ratios of 237Np/197Au, Serpent 2 calculations reveal a fairly good accuracy at the thermal neutron spectrum. The total uncertainties of the 237Np/235U, 241Am/235U, and 243Am/235U fission reaction rate ratios by MARBLE with the covariance data of ENDF/B-VIII.0 and JENDL-5 are found to be about 4% at most in all cores, except for about 8% for 243Am/235U with ENDF/B-VIII.0 at the intermediate neutron spectrum.